SAULT COLLEGE OF APPLIED ARTS & TECHNOLOGY

SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

Course Title:	ELECTRICAL FUNDAMENTALS	
Code No.:	ELR 100-7	
Program:	ELECTRICAL/ELECTRONIC/COMPUTER TECHNOLOGY	
Semester:	ONE	
Date:	SEPTEMBER, 1985	
Author:	ROBERT PALO	

New: Revision: X

APPROVED: APPROVED: Chairperson

June 1985 Date

1

ELECTRICAL FUNDAMENTALS

Course Name

ELR 100-7

Course Number

PHILOSOPHY/GOALS:

To provide a basic understanding of electricity and magnetism.

GRADING:

 Written tests conducted at regular intervals and assigned equal weight. Missed tests are graded zero percent provided a legitimate excuse such as illness can be supported by a doctor's certificate. Comprehensive make-up tests at the end of the semester for people who missed tests with legitimate excuses.

2.	Grading:	Α	-	80	-	100%
		В	-	66	-	79%
		С	-	55	-	65%
		R	-	Repeat		

- 3. 70% for tests, 30% for labs.
- 4. Lectures, labs and tutorials attendance mandatory.

TEXTBOOK(S):

"Fundamentals of Electric Circuits", 3rd Edition, David A. Bell

		BLOCK #1
TOPIC	CHAPTER	HOURS
The nature of electricity The intenational system of units The electrical units Conductors, insulators and resistors Voltage cells and batteries Series resistive circuits Parallel resistive circuits Series-parallel circuits Network theorems	1 2 3 5 6 7 8 9 11	1 5 2 3 3 3 3 3
TOPIC Magnetism Magnetic circuits Inductance	<u>CHAPTER</u> 12 13 15	23 HOURS 5 5 5 15

- 3 -

BLOCK #3

TOPI	<u>C</u>	CHAPTER		HOURS
		16		F
	citance	16		5 5
Indu	ctance & capacitance in DC circuits	17	1	$\frac{5}{10}$
				10
				BLOCK #1
SPEC	IFIC OBJECTIVES:			BLOCK #1
The s	student should be able to recall, explain or	apply:		
	The electrostatic laws		t , r	
	Atomic structure			
	Electromotive Force (EMF) & Current			
	Scientific notation			
	The force-mass relation			
	Potential energy eqn.			
	Kinetic energy eqn.			
	Power eqn.			
	leat eqn.			
	Coulomb's law			
	Conventional & electron current flow			C . 11
	Force, work & power required to move charge	through an	electri	c field
	Resistance & conductance			
	OHM's Law for electric circuits			
	Electric power formulas			
	Efficiency			
	Types of atomic bonding			
	Breakdown voltage in insulators			
	Conductor resistivity eqn.			
	Resistor construction & color core			
	Resistor power ratings			
	Simple voltage cell MP-HR rating			
	Difference between primary & secondary cells			
	Equivalent cell model of a battery			
	The types of dry cells			
	low voltage cells behave in series			
	low voltage cells behave in parallel			
	Construction of lead-acid batteries			
	The student shall be able to calculate the e	quivalent	resistan	ce, drops and power
	lissipation in the following single source D	-		ee, aropo and power
	a) Series resistance			
) Parallel resistance			
) Series-parallel resistance			
	The student shall be able to recall and expl	ain		
	a) The voltage divider law			
) The current divider law			
	he student shall be able to explain and app	ly the sup	erpositio	on THM to
r	esistive networks with more than one voltage	e or curre	nt source	e •

SPECIFIC OBJECTIVES CONTINUED

resistive network with one or more sources.

BLOCK #2

The student shall be able to recall, explain or apply:

- 1. The fundamental law of magnetism.
- 2. The fundamental law of electromagnetism.
- 3. Types of magnetic materials.
- 4. Magnetic moment & magnetic domains.
- 5. Magnetic flux and flux density.
- 6. Magnetomotive force (MMF) and magnetic field strength.
- 7. Force on a current carrying conductor in a magnetic field.
- 8. The relationship between flux density and field strength (permeability)
- 9. Reluctance equation.
- 10. Ampere's law for magnetic circuits.
- 11. The student shall be able to calculate the reluctance, flux, MMF drops in simple homogeneous and composite magnetic circuits composed of air and/or iron.
- 12. The student should be able to calculate the force of attraction between magnetic materials.

The student shall be able to recall, explain or apply:

- 13. Magnetization curves.
- 14. Hysteresis curves.
- 15. Eddy currents.
- 16. The fundamentals law of electromagnetic induction (Faraday's law).
- 17. Self Inductance equation.
- 18. Inductance of a solenoid.
- 19. Mutual inductance equation.
- 20. Mutual inductance between magnetically coupled solenoids.
- 21. Types of inductors.
- 22. Energy stored in an inductor.
- 23. Equivalent inductance for uncoupled inductors in series and parallel.

BLOEK #3

The student shall be able to recall, explain or apply:

- 1. Electric flux and flux density.
- 2. Electric field strength.
- 3. The relationship between electric flux density and electric field strength (permittivity).
- 4. Capacitance equation.
- 5. Capacitance between parallel electrical charged plates.
- 6. Capacitor types and characteristics.
- 7. Equivalent capacitance of series and parallel connected capacitors.
- 8. Energy stored in a charged capacitor.
- 9. The student shall be able to calculate the instantaneous current in a switched DC, R-L Circuit and a switched DC, R-C circuit.
- 10. The student shall be able to define and calculate the time constant for R-L and R-C circuits.